
Communications Toolbox
Release Notes

Chapter 1, “Communications Toolbox 3.1 Release Notes” describes the
changes introduced in the latest version of the Communications Toolbox. The
following topics are discussed in these Release Notes:

• “New Features” on page 1-2

• “Major Bug Fixes” on page 1-3

• “Upgrading from an Earlier Release” on page 1-4

The Communications Toolbox Release Notes also provide information about
the earlier versions of the product, in case you are upgrading from a version
that was released prior to Release 14SP1:

• Chapter 2, “Communications Toolbox 3.0.1 Release Notes”

• Chapter 3, “Communications Toolbox 3.0 Release Notes”

• Chapter 4, “Communications Toolbox 2.1 Release Notes”

• Chapter 5, “Communications Toolbox 2.0 Release Notes”

2

Contents

Communications Toolbox 3.1 Release Notes

1
New Features . 1-2

Channel Visualization Tool . 1-2
Improved Rayleigh Fading Channel 1-2
Gray Coding Functionality . 1-2
Rician Channel Enhancement to the BERTool 1-2

Major Bug Fixes . 1-3

Upgrading from an Earlier Release 1-4
gfrank . 1-4
encode, decode, and quantiz . 1-4

Communications Toolbox 3.0.1 Release Notes

2
New Features . 2-2

Rician Channel BER Calculations . 2-2
berfading Updated for Rician Channel 2-2
New Adaptive Equalization Demo . 2-2

Major Bug Fixes . 2-3

Communications Toolbox 3.0 Release Notes

3
New Features . 3-2

Bit Error Rate Analysis GUI . 3-2
Performance Evaluation . 3-3

iii

Equalizers . 3-3
Fading Channels and Binary Symmetric Channel 3-4
Interleavers . 3-5
Huffman Coding . 3-6
Pulse Shaping . 3-6
Utility Functions . 3-7
Enhancements for Modulation . 3-7
Enhancements for BCH Coding . 3-9

Major Bug Fixes . 3-10

Upgrading from an Earlier Release 3-11
Updating Existing Modulation M-Code 3-11
Updating Existing BCH M-Code . 3-12
Changes in Functionality . 3-13
Obsolete Functions . 3-13

Known Software and Documentation Problems 3-15

Communications Toolbox 2.1 Release Notes

4
New Features . 4-2

Galois Field Computations . 4-2
Enhancements for Reed-Solomon Codes 4-2
Arithmetic Coding . 4-3

Major Bug Fixes . 4-4
Bug Fixes Incorporated from Release 12.0 4-4

Upgrading from an Earlier Release 4-5
Updating Existing Galois Field Code 4-5
Updating Existing Reed-Solomon M-Code 4-10
Changes in Functionality . 4-13
Obsolete Functions . 4-14

iv Contents

Communications Toolbox 2.0 Release Notes

5
New Features . 5-2

Convolutional Coding Functions . 5-2
Gaussian Noise Functions . 5-2
Other New Functions . 5-3
Enhancements to Existing Functions 5-3

Major Bug Fixes . 5-4

Upgrading from an Earlier Release 5-5
Changes in Functionality . 5-5
Obsolete Functions . 5-7

v

vi Contents

1

Communications Toolbox
3.1 Release Notes

1 Communications Toolbox 3.1 Release Notes

New Features
This section summarizes the new features and enhancements introduced
in the Communications Toolbox 3.1:

• “Channel Visualization Tool” on page 1-2

• “Improved Rayleigh Fading Channel” on page 1-2

• “Gray Coding Functionality” on page 1-2

• “Rician Channel Enhancement to the BERTool” on page 1-2

If you are upgrading from a release earlier than Release 14SP1, then you
should also see “New Features” on page 2-2 in the Communications Toolbox
3.0.1 Release Notes.

Channel Visualization Tool
A new channel visualization tool allows you to plot various channel
characteristics. See in the Communications Toolbox User’s Guide for details.

Improved Rayleigh Fading Channel
Increased the signal processing speed of the Rayleigh Fading channel,
rayleighchan, by up to a factor of two.

Gray Coding Functionality
Added the functions, bin2gray and gray2bin, to convert between Gray
decoded and encoded integers.

Added Gray symbol ordering to the functions pskmod, pammod, dpskmmod,
qammod, fskmod, pskdemod, pamdemod, dpskdemod, qamdemod, and fskdemod.

Rician Channel Enhancement to the BERTool
The bertool now has theoretical BER results for a Rician channel.

1-2

Major Bug Fixes

Major Bug Fixes
The Communications Toolbox 3.1 includes several bug fixes made since
Version 3.0.1. You can see a list of the particularly important Version 3.1
bug fixes.

If you are viewing these Release Notes in PDF form, please refer to the HTML
form of the Release Notes, using either the Help browser or the MathWorks
Web site and use the link provided.

If you are upgrading from a release earlier than Release 14 SP1, then you
should also see “Major Bug Fixes” on page 2-3 in the Communications Toolbox
3.0.1 Release Notes.

1-3

1 Communications Toolbox 3.1 Release Notes

Upgrading from an Earlier Release
This section describes these issues involved in upgrading from the
Communications Toolbox 3.0.1 to Version 3.1:

• “gfrank” on page 1-4

• “encode, decode, and quantiz” on page 1-4

If you are upgrading from a version earlier than 3.0, then you should also see
“Upgrading from an Earlier Release” on page 3-11 in the Communications
Toolbox 3.0 Release Notes.

gfrank
The function gfrank now returns 0, instead of [], on a zero matrix input.

encode, decode, and quantiz
The outputs of the encode, decode, and quantiz functions now match the
input vector’s orientation.

1-4

2

Communications Toolbox
3.0.1 Release Notes

2 Communications Toolbox 3.0.1 Release Notes

New Features
This section summarizes the new features and enhancements introduced in
the Communications Toolbox 3.0.1.

If you are upgrading from a release earlier than Release 14, then you should
see the Chapter 3, “Communications Toolbox 3.0 Release Notes”.

Rician Channel BER Calculations
The BERTool is enhanced to allow for Rician channel BER calculations. For
details, see Available Sets of Theoretical BER Data in the Communications
Toolbox documentation.

berfading Updated for Rician Channel
berfading is enhanced to return the BER of BPSK over uncoded flat Rician
fading channels. For details, see the Communications Toolbox documentation
for berfading.

New Adaptive Equalization Demo
A new demo illustrates adaptive equalization using Embedded MATLAB. To
open the demo, type equalizer_eml at the MATLAB command line.

2-2

Major Bug Fixes

Major Bug Fixes
The Communications Toolbox 3.0.1 includes several bug fixes made since
Version 3.0. You can see a list of the particularly important Version 3.0.1
bug fixes.

If you are viewing these Release Notes in PDF form, please refer to the HTML
form of the Release Notes, using either the Help browser or the MathWorks
Web site and use the link provided.

If you are upgrading from a release earlier than Release 14, then you should
see “Major Bug Fixes” on page 3-10 in the Communications Toolbox 3.0
Release Notes.

2-3

2 Communications Toolbox 3.0.1 Release Notes

2-4

3

Communications Toolbox
3.0 Release Notes

3 Communications Toolbox 3.0 Release Notes

New Features
This section summarizes the new features and enhancements introduced
in the Communications Toolbox 3.0:

• “Bit Error Rate Analysis GUI” on page 3-2

• “Performance Evaluation” on page 3-3

• “Equalizers” on page 3-3

• “Fading Channels and Binary Symmetric Channel” on page 3-4

• “Interleavers” on page 3-5

• “Huffman Coding” on page 3-6

• “Pulse Shaping” on page 3-6

• “Utility Functions” on page 3-7

• “Enhancements for Modulation” on page 3-7

• “Enhancements for BCH Coding” on page 3-9

If you are upgrading from a release earlier than Release 13, then you should
see “New Features” on page 4-2.

Bit Error Rate Analysis GUI
The Communications Toolbox has a graphical user interface (GUI) called
BERTool that helps you analyze communication systems’ bit error rate (BER)
performance. To invoke the GUI, type

bertool

in the MATLAB Command Window.

For more information and examples, see "BERTool: A Bit Error Rate Analysis
GUI" and the Bit Error Rate Analysis Tool demo. Some of the capabilities
of the GUI are also available using command-line functions, described in
"Performance Evaluation".

3-2

New Features

Performance Evaluation
The functions in the table below enable you to measure or visualize the bit
error rate performance of a communication system.

Function Purpose

berawgn Error probability for uncoded AWGN channels

bercoding Error probability for coded AWGN channels

berconfint BER and confidence interval of Monte Carlo
simulation

berfading Error probability for Rayleigh fading channels

berfit Fit a curve to nonsmooth empirical BER data

bersync Bit error rate for imperfect synchronization

distspec Compute the distance spectrum of a convolutional
code

semianalytic Calculate bit error rate using the semianalytic
technique

For more information and examples, see "Performance Evaluation" in the
Communications Toolbox documentation. Some of the capabilities of these
functions are also available from the BERTool GUI, described in "BERTool: A
Bit Error Rate Analysis GUI".

Equalizers
The functions in the table below enable you to equalize a signal using a linear
equalizer, a decision feedback equalizer, or a maximum-likelihood sequence
estimation equalizer based on the Viterbi algorithm.

Function Purpose

cma Construct a constant modulus algorithm (CMA)
object

dfe Construct a decision feedback equalizer object

equalize Equalize a signal using an equalizer object

3-3

3 Communications Toolbox 3.0 Release Notes

Function Purpose

lineareq Construct a linear equalizer object

lms Construct a least mean square (LMS) adaptive
algorithm object

mlseeq Equalize a linearly modulated signal using the
Viterbi algorithm

normlms Construct a normalized least mean square (LMS)
adaptive algorithm object

rls Construct a recursive least squares (RLS) adaptive
algorithm object

signlms Construct a signed least mean square (LMS)
adaptive algorithm object

varlms Construct a variable step size least mean square
(LMS) adaptive algorithm object

For more information and examples, see "Equalizers" in the Communications
Toolbox documentation. See also the Adaptive Equalization Simulation demo
(part I and part II).

Fading Channels and Binary Symmetric Channel
The functions in the tables below enable you to model a Rayleigh fading
channel, Rician fading channel, and binary symmetric channel.

Function Purpose

bsc Model a binary symmetric channel

filter (for channel objects) Filter signal with channel object

rayleighchan Construct a Rayleigh fading channel
object

reset Reset channel object

ricianchan Construct a Rician fading channel
object

3-4

New Features

For more information and examples, see "Channels" in the Communications
Toolbox documentation.

Interleavers
The functions in the tables below enable you to perform block interleaving
and convolutional interleaving, respectively.

Block Interleaving

Function Purpose

algdeintrlv Restore ordering of symbols using algebraically
derived permutation table

algintrlv Reorder symbols using algebraically derived
permutation table

deintrlv Restore ordering of symbols

helscandeintrlv Restore ordering of symbols in a helical pattern

helscanintrlv Reorder symbols in a helical pattern

intrlv Reorder sequence of symbols

matdeintrlv Restore ordering of symbols by filling a matrix by
columns and emptying it by rows

matintrlv Reorder symbols by filling a matrix by rows and
emptying it by columns

randdeintrlv Restore ordering of symbols using a random
permutation

randintrlv Reorder symbols using a random permutation

Convolutional Interleaving

Function Purpose

convdeintrlv Restore ordering of symbols using shift registers

convintrlv Permute symbols using shift registers

3-5

3 Communications Toolbox 3.0 Release Notes

Convolutional Interleaving (Continued)

Function Purpose

heldeintrlv Restore ordering of symbols permuted using
helintrlv

helintrlv Permute symbols using a helical array

muxdeintrlv Restore ordering of symbols using specified shift
registers

muxintrlv Permute symbols using shift registers with
specified delays

For more information and examples, see "Interleaving" in the Communications
Toolbox documentation.

Huffman Coding
The functions in the table below enable you to perform Huffman coding.

Function Purpose

huffmandeco Huffman decoder

huffmandict Generate Huffman code dictionary for a source
with known probability model

huffmanenco Huffman encoder

For more information and examples, see "Huffman Coding" in the Source
Coding chapter of the Communications Toolbox documentation.

Pulse Shaping
The functions in the table below enable you to perform rectangular pulse
shaping at a transmitter and matched filtering at the corresponding receiver.

3-6

New Features

Function Purpose

intdump Integrate and dump

rectpulse Rectangular pulse shaping

These functions can be useful in conjunction with the modulation functions
listed below.

Utility Functions
The toolbox now includes the following utility functions, details of which are
on the corresponding reference pages.

Function Purpose

noisebw Equivalent noise bandwidth of a filter

qfunc Q function

qfuncinv Inverse Q function

Enhancements for Modulation
The functions in the tables below enable you to perform modulation and
demodulation using analog and digital methods. Some of the functions
support modulation types that the Communications Toolbox did not previously
support (DPSK and OQPSK). Other functions enhance and replace the older
modulation and demodulation functions in the Communications Toolbox. The
new modulation and demodulation functions are designed to be easier to
use than the older ones. Note, however, that the current set of modulation
functions supports only analog passband and digital baseband modulation.

Analog Passband Modulation

Function Purpose

amdemod Amplitude demodulation

ammod Amplitude modulation

fmdemod Frequency demodulation

3-7

3 Communications Toolbox 3.0 Release Notes

Analog Passband Modulation (Continued)

Function Purpose

fmmod Frequency modulation

pmdemod Phase demodulation

pmmod Phase modulation

ssbdemod Single sideband amplitude demodulation

ssbmod Single sideband amplitude modulation

Digital Baseband Modulation

Function Purpose

dpskdemod Differential phase shift keying demodulation

dpskmod Differential phase shift keying modulation

fskmod Frequency shift keying modulation

fskdemod Frequency shift keying demodulation

genqamdemod General quadrature amplitude demodulation

genqammod General quadrature amplitude modulation

modnorm Scaling factor for normalizing modulation output

oqpskdemod Offset quadrature phase shift keying demodulation

oqpskmod Offset quadrature phase shift keying modulation

pamdemod Pulse amplitude demodulation

pammod Pulse amplitude modulation

pskdemod Phase shift keying demodulation

pskmod Phase shift keying modulation

qamdemod Quadrature amplitude demodulation

qammod Quadrature amplitude modulation

For more information and examples, see "Modulation" in the Communications
Toolbox documentation.

3-8

New Features

Enhancements for BCH Coding
The functions in the table below enable you to encode and decode BCH codes.
These functions enhance and replace the older BCH coding functions in the
Communications Toolbox.

Function Purpose

bchdec BCH decoder

bchenc BCH encoder

bchgenpoly Generator polynomial of BCH code

When processing codes using these functions, you can control the primitive
polynomial used to describe the Galois field containing the code symbols and
the position of the parity symbols.

For more information and examples, see "Block Coding" in the Error-Control
Coding chapter of the Communications Toolbox documentation.

3-9

3 Communications Toolbox 3.0 Release Notes

Major Bug Fixes
The Communications Toolbox 3.0 includes several bug fixes made since
Version 2.1. You can see a list of the particularly important Version 3.0 bug
fixes.

If you are viewing these Release Notes in PDF form, please refer to the HTML
form of the Release Notes, using either the Help browser or the MathWorks
Web site and use the link provided.

If you are upgrading from a release earlier than Release 13, then you should
see “Major Bug Fixes” on page 4-4 in the Communications Toolbox 2.1 Release
Notes.

3-10

Upgrading from an Earlier Release

Upgrading from an Earlier Release
This section describes these issues involved in upgrading from the
Communications Toolbox 2.1 to Version 3.0:

• “Updating Existing Modulation M-Code” on page 3-11

• “Updating Existing BCH M-Code” on page 3-12

• “Changes in Functionality” on page 3-13

• “Obsolete Functions” on page 3-13

If you are upgrading from a version earlier than 2.1, then you should see
“Upgrading from an Earlier Release” on page 4-5.

Updating Existing Modulation M-Code
If your existing M-code performs modulation or demodulation, then you
might want to update it to use the enhanced modulation or demodulation
capabilities. Here are some important points to keep in mind:

• The toolbox no longer supports digital passband modulation/demodulation.
However, it supports digital baseband modulation/demodulation, which
is usually preferable.

• The toolbox no longer supports analog baseband modulation/demodulation.
However, it supports analog passband modulation/demodulation.

• The new suite of functions includes a different function for each supported
modulation type, whereas the old suite of functions included a smaller
number of functions that each supported many modulation types. To
find out which functions to use in the new suite, see the lists in "Analog
Modulation/Demodulation" and "Digital Modulation/Demodulation".

• The new modulation/demodulation functions do not apply rectangular pulse
shaping when modulating, and do not downsample when demodulating.
Also, the new functions’ syntax does not involve Fd, the sampling rate of
the modulator input. To imitate the old functions’ behavior, see the new
rectpulse and intdump functions.

• In most cases, the new functions use different kinds of input arguments to
describe parameters of the modulation or demodulation scheme. The new

3-11

3 Communications Toolbox 3.0 Release Notes

sets of arguments are meant to be easier to use, but determining how to
update code might not be obvious. To make the task easier, compare the
documentation for the old and new functions and compare the functions’
outputs for small or well-understood data sets.

Updating Existing BCH M-Code
If your existing M-code processes BCH codes, then you might want to update
it to use the enhanced BCH capabilities. Here are some important points
to keep in mind:

• Use bchenc instead of bchenco and encode(...,'bch').

• Use bchdec instead of bchdeco and decode(...,'bch').

• Use bchgenpoly instead of bchpoly.

• bchenc and bchdec use Galois arrays for the messages and codewords.
To learn more about Galois arrays, see "Representing Elements of Galois
Fields".

• bchenc places (and bchdec expects to find) the parity symbols at the end of
each word by default. To process codes in which the parity symbols are at
the beginning of each word, use the string 'beginning' as the last input
argument when you invoke bchenc and bchdec.

Converting Between Release 13 and Release 14
Representations of Code Data
To help you update your existing M-code that processes BCH codes, the
example below illustrates how to encode data using the new bchenc function
and the earlier encode and bchenco functions.

% Basic parameters for coding
n = 15; k = 11; % Message length and codeword length
w = 10; % Number of words to encode in this example

% R13 binary vector format
mydata_r13 = randint(w*k,1); % Long vector
% R13 binary matrix format
mydata_r13_mat = reshape(mydata_r13,k,w)'; % One message per row
% R13 decimal format
mydata_r13_dec = bi2de(mydata_r13_mat); % Convert to decimal.

3-12

Upgrading from an Earlier Release

% Equivalent R14 Galois array format
mydata_r14 = fliplr(gf(mydata_r13_mat));

% Encode the data using R13 methods.
code_r13 = encode(mydata_r13,n,k,'bch');
code_r13_mat = encode(mydata_r13_mat,n,k,'bch');
code_r13_dec = encode(mydata_r13_dec,n,k,'bch/decimal');
code_r13_bchenco = bchenco(mydata_r13_mat,n,k);

% Encode the data using R14 method.
code_r14 = bchenc(mydata_r14,n,k);
codeX = fliplr(double(code_r14.x)); % Retrieve from Galois array.

% Check that all resulting codes are the same.
% c1, c2, c3, and c4 should all be true.
c1 = isequal(de2bi(code_r13_dec),code_r13_mat);
c2 = isequal(reshape(code_r13,n,w)',code_r13_mat);
c3 = isequal(code_r13_bchenco,code_r13_mat);
c4 = isequal(code_r13_mat,codeX); % Compare R13 with R14.

Changes in Functionality
The encode and decode functions no longer perform BCH encoding and
decoding. Use the bchenc and bchdec functions instead.

Obsolete Functions
The table below lists functions that are obsolete. Although they are included
in Release 13 for backward compatibility, they might be removed in a future
release. The second column lists functions that provide similar functionality.
In some cases, the similar function requires different input arguments or
produces different output arguments, compared to the original function.

Obsolete Function Similar Function in R14

ademod amdemod, fmdemod, pmdemod,
ssbdemod

3-13

3 Communications Toolbox 3.0 Release Notes

Obsolete Function Similar Function in R14

ademodce Use passband demodulation
instead: amdemod, fmdemod, pmdemod,
ssbdemod

amod ammod, fmmod, pmmod, ssbmod

amodce Use passband modulation instead:
ammod, fmmod, pmmod, ssbmod

apkconst genqammod or pskmod for mapping;
scatterplot for plotting

bchdeco bchdec

bchenco bchenc

bchpoly bchgenpoly

ddemod Use baseband demodulation instead:
genqamdemod, pamdemod, pskdemod,
qamdemod, fskdemod

ddemodce genqamdemod, pamdemod, pskdemod,
qamdemod, fskdemod

demodmap genqamdemod, pamdemod, pskdemod,
qamdemod

dmod Use baseband modulation instead:
genqammod, pammod, pskmod, qammod,
fskmod

dmodce genqammod, pammod, pskmod, qammod,
fskmod

modmap genqammod, pammod, pskmod, qammod
for mapping; scatterplot for
plotting

qaskdeco qamdemod

qaskenco qammod for mapping; scatterplot
for plotting

3-14

Known Software and Documentation Problems

Known Software and Documentation Problems
This section includes a link to a description of known software and
documentation problems in Version 3.0.

If you are viewing these Release Notes in PDF form, please refer to the HTML
form of the Release Notes, using either the Help browser or the MathWorks
Web site and use the link provided.

3-15

3 Communications Toolbox 3.0 Release Notes

3-16

4

Communications Toolbox
2.1 Release Notes

4 Communications Toolbox 2.1 Release Notes

New Features
This section summarizes the new features and enhancements introduced
in the Communications Toolbox 2.1.

If you are upgrading from a release earlier than Release 12.1, then you should
see “New Features” on page 5-2 of the Communications Toolbox 2.0 Release
Notes.

Galois Field Computations
The Communications Toolbox supports a new data type that allows you to
manipulate arrays of elements of a Galois field having 2m elements, where m is
an integer between 1 and 16. When you use this data type, most computations
have the same syntax that you would use to manipulate ordinary MATLAB
arrays of real numbers. The consistency with MATLAB syntax makes the
new Galois field capabilities easier to use than the analogous Release 12
capabilities. For information about the new Galois field capabilities, see
"Galois Field Computations" in the Communications Toolbox documentation.

Enhancements for Reed-Solomon Codes
The functions in the table below allow you to encode and decode Reed-Solomon
codes, including shortened Reed-Solomon codes. These functions enhance
and replace the older Reed-Solomon coding functions in the Communications
Toolbox.

Function Purpose

rsdec Reed-Solomon decoder

rsenc Reed-Solomon encoder

rsgenpoly Generator polynomial of
Reed-Solomon code

When processing codes using these functions, you can control the generator
polynomial, the primitive polynomial used to describe the Galois field
containing the code symbols, and the position of the parity symbols.

4-2

New Features

For more information and examples, see "Block Coding" in the
Communications Toolbox documentation.

Arithmetic Coding
The functions in the table below allow you to perform arithmetic coding.

Function Purpose

arithdeco Decode binary code using arithmetic
decoding

arithenco Encode a sequence of symbols using
arithmetic coding

4-3

4 Communications Toolbox 2.1 Release Notes

Major Bug Fixes
The Communications Toolbox 2.1 includes several bug fixes made since
Version 2.0.1, including these:

• Reed-Solomon decoder corrects up to t errors.

• Reed-Solomon encoder and decoder use more conventional format for data.

Bug Fixes Incorporated from Release 12.0
If you are upgrading from a release earlier than Release 12.1, then you should
see “Major Bug Fixes” on page 5-4 in the Communications Toolbox 2.0 Release
Notes.

4-4

Upgrading from an Earlier Release

Upgrading from an Earlier Release
This section describes the upgrade issues involved in moving from the
Communications Toolbox 2.0.1 to Version 2.1. This section discusses the
following topics:

• “Updating Existing Galois Field Code” on page 4-5

• “Updating Existing Reed-Solomon M-Code” on page 4-10

• “Changes in Functionality” on page 4-13

• “Obsolete Functions” on page 4-14

If you are upgrading from a version earlier than 2.0.1, then you should see
“Upgrading from an Earlier Release” on page 5-5 of the Communications
Toolbox 2.0 Release Notes.

Updating Existing Galois Field Code
If your existing code performs computations in Galois fields having 2m

elements, where m is an integer between 1 and 16, then you might want to
update your code to use the new Galois field capabilities.

Replacing Functions
The table below lists Release 12 functions that correspond to Release 13
functions or operators acting on the new Galois field data type. Compared to
the syntax of their Release 12 counterparts, the syntaxes of the Release 13
functions are different, but generally easier to use.

Release 12 Function
Release 13 Function
or Operator Comments

gfadd +

gfconv conv

gfcosets cosets cosets returns a
cell array, whereas
gfcosets returns a
NaN-padded matrix.

4-5

4 Communications Toolbox 2.1 Release Notes

Release 12 Function
Release 13 Function
or Operator Comments

gfdeconv deconv

gfdiv ./

gffilter filter Unlike gffilter,
filter also returns
the final states.

gflineq \

gfplus +

gfprimck isprimitive isprimitive detects
primitivity but not
reducibility.

gfprimdf primpoly

gfprimfd primpoly

gfrank rank

gfroots roots Unlike gfroots, roots
indicates multiplicities
of roots and can process
polynomials in an
extension field

gfsub -

gftuple .^, log, polyval See “Converting and
Simplifying Formats
Using R13 Galois
Arrays” on page 4-9 for
more details.

Converting Between Release 12 and Release 13
Representations of Field Elements
In some parts of your existing code, you might need to convert data between
the exponential format supported in Release 12 and the new Galois array.

4-6

Upgrading from an Earlier Release

The code example below performs such conversions on a sample vector that
represents elements of GF(16).

% Sample data
m = 4; % For example, work in GF(2^4) = GF(16).
a_r12 = [2 5 0 -Inf]; % GF(16) elements in exponential format

% 1. Convert to the Release 13 Galois array.
A = gf(2,m); % Primitive element of the field
a_r13 = A.^(a_r12); % Positive exponents mean A to that power.
a_r13(find(a_r12 < 0)) = 0; % Negative exponents mean zero.

% 2. Convert back to the Release 12 exponential format.
m = a_r13.m; A = gf(2,m);
a_r12again = zeros(size(a_r13)); % Preallocate space in a matrix.
zerolocations = find(a_r13 == 0);
nonzerolocations = find(a_r13 ~= 0);
a_r12again(zerolocations) = -Inf; % Map 0 to negative exponent.
a_r12again(nonzerolocations) = log(a_r13(nonzerolocations));

% Check that the two conversions are inverses.
ck = isequal(a_r12,a_r12again)

ck =

1

Converting Between Release 12 and Release 13
Representations of Polynomials
Release 12 and Release 13 use different formats for representing polynomials
over GF(2m). Release 12 represents a polynomial as a vector of coefficients in
order of ascending powers. Depending on the context, each coefficient listed in
the vector represents either an element in a prime field or the exponential
format of an element in an extension field. Release 13 uses the conventions
described below.

4-7

4 Communications Toolbox 2.1 Release Notes

Primitive polynomials. The functions gf, isprimitive, and primpoly
represent a primitive polynomial using an integer scalar whose binary
representation lists the coefficients of the polynomial. The least significant bit
is the constant term.

For example, the scalar 13 has binary representation 1101 and represents
the polynomial D3 + D2 + 1.

Other polynomials. When performing arithmetic with, evaluating, or
finding roots of a polynomial, or when finding a minimal polynomial of a field
element, you represent the polynomial using a Galois vector of coefficients in
order of descending powers. Each coefficient listed in the vector represents
an element in the field using the representation described in "How Integers
Correspond to Galois Field Elements".

For example, the Galois vector gf([1 1 0 1],1) represents the polynomial
x3 + x2 + 1. Also, the Galois vector gf([1 2 3],3) represents the polynomial
x2 + Ax + (A+1), where A is a root of the default primitive polynomial for
GF(23). The coefficient of A+1 corresponds to the vector entry of 3 because
the binary representation of 3 is 11.

Example Showing Conversions. The code example below might help you
determine how to convert between the Release 12 and Release 13 formats
for polynomials.

m = 3; % Work in GF(8).

poly_r12 = [1 1 0 1]; % 1+x+x^3, ascending order
poly_r13 = gf([1 0 1 1],m); % x^3+x+1 in GF(8), descending order

% R12 polynomials
pp_r12 = gfprimdf(m); % A primitive polynomial
mp_r12 = gfminpol(4,m); % The minimal polynomial of an element
rts_r12 = gfroots(poly_r12); % Find roots.

% R13 polynomials
pp_r13 = primpoly(m,'nodisplay'); % A primitive polynomial
mp_r13 = minpol(gf(4,m)); % The minimal polynomial of an element
rts_r13 = roots(poly_r13); % Find roots.

4-8

Upgrading from an Earlier Release

% R12 polynomials converted to R13 formats
% For primitive poly, change binary vector to decimal scalar.
pp_r12_conv = bi2de(pp_r12);
% For minimal poly, change ordering and make it a Galois array.
mp_r12_conv = gf(fliplr(mp_r12));
% For roots of polynomial, note that R12 answers are in
% exponential format. Convert to Galois array format.
rts_r12_conv = gf(2,m) .^ rts_r12;

% Check that R12 and R13 yield the same answers.
c1 = isequal(pp_r13,pp_r12_conv); % True.
c2 = isequal(mp_r13,mp_r12_conv); % True.
c3 = isequal(rts_r13,rts_r12_conv); % True.

Converting and Simplifying Formats Using R13 Galois Arrays
If your existing code uses gftuple to convert between exponential and
polynomial formats, or to simplify one of these formats, then the code example
below might help you determine how to perform those tasks using the Release
13 Galois array.

% First define key characteristics of the field.
m = 4; % For example, work in GF(2^4) = GF(16).
A = gf(2,m); % Primitive element of the field

% 1. Simplifying a Polynomial Format
poly_big = 2^10 + 2^7;
% Want to refer to the element A^10 + A^7. However,
% cannot use gf(poly_big,m) because poly_big is too large.
poly1 = A.^10 + A.^7 % One way to define the element.
poly2 = polyval(de2bi(poly_big,'left-msb'),A); % Another way.
% The results show that A^10 + A^7 equals A^3 + A^2 in this
% field, using the binary representation of 12 as 1100.

% 2. Simplifying an Exponential Format
exp_big = 39;
exp_simple = log(A.^exp_big) % Simplest exponential format.
% The results show that A^39 equals A^9 in this field.

4-9

4 Communications Toolbox 2.1 Release Notes

% 3. Converting from Exponential to Polynomial Format
expf1 = 7;
pf1 = A.^expf1
% The results show that A^7 equals A^3 + A + 1 in this
% field, using the binary representation of 11 as 1011.

% 4. Converting from Polynomial to Exponential Format
pf2 = 11; % Represents the element A^3 + A + 1
expf2 = log(gf(pf2,m))
% The results show that A^3 + A + 1 equals A^7 in this field.

The output is below.

poly1 = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

12

exp_simple =

9

pf1 = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

11

expf2 =

7

Updating Existing Reed-Solomon M-Code
If your existing M-code processes Reed-Solomon codes, then you might want
to update it to use the enhanced Reed-Solomon capabilities. Below are some
important points to keep in mind:

4-10

Upgrading from an Earlier Release

• Use rsenc instead of rsenco, rsencode, and encode(...,'rs').

• Use rsdec instead of rsdeco, rsdecode, and decode(...,'rs').

• Use rsgenpoly instead of rspoly.

• rsenc and rsdec use Galois arrays for the messages and codewords. To
learn more about Galois arrays, see "Representing Elements of Galois
Fields".

• rsenc and rsdec interpret symbols in a different way compared to the
Release 12 functions. For an example showing how to convert between
Release 12 and Release 13 interpretations, see “Converting Between
Release 12 and Release 13 Representations of Code Data” on page 4-11.

• The Release 12 functions support three different data formats. The
exponential format is most easily converted to the Release 13 format. To
convert your data among the various Release 12 formats as you prepare to
upgrade to the new Release 13 functions, see “Converting Among Various
Release 12 Representations of Coding Data” on page 4-13.

• rsenc, rsdec, and rsgenpoly use a Galois array in descending order to
represent the generator polynomial argument. The commands below
indicate how to convert generator polynomials from the Release 12 format
to the Release 13 format.

n = 7; k = 3; % Examples of code parameters
m = log2(n+1); % Number of bits in each symbol
gp_r12 = rspoly(n,k); % R12 exponential format, ascending order
gp_r13 = gf(2,m).^fliplr(gp_r12); % Convert to R13 format.

• rsenc places (and rsdec expects to find) the parity symbols at the end of
each word by default. To process codes in which the parity symbols are at
the beginning of each word, use the string 'beginning' as the last input
argument when you invoke rsenc and rsdec.

Converting Between Release 12 and Release 13
Representations of Code Data
To help you update your existing M-code that processes Reed-Solomon codes,
the example below illustrates how to encode data using the new rsenc
function and the earlier rsenco function.

4-11

4 Communications Toolbox 2.1 Release Notes

% Basic parameters for coding
m = 4; % Number of bits per symbol in each codeword
t = 2; % Error-correction capability
n = 2^m-1; k = n-2*t; % Message length and codeword length
w = 10; % Number of words to encode in this example

% Lookup tables to translate formats between rsenco and rsenc
p2i = [0 gf(2,m).^[0:2^m-2]]; % Galois vector listing powers
i2p = [-1 log(gf(1:2^m-1,m))]; % Integer vector listing logs

% R12 method, exponential format
% Exponential format uses integers between -1 and 2^m-2.
mydata_r12 = randint(w,k,2^m)-1;
code_r12 = rsenco(mydata_r12,n,k,'power'); % * Encode the data. *
% Convert any -Inf values to -1 to facilitate comparisons.
code_r12(isinf(code_r12)) = -1;
code_r12 = reshape(code_r12,n,w)'; % One codeword per row

% R12 method, decimal format
% This yields same results as R12 exponential format.
mydata_r12_dec = mydata_r12 + 1; % Convert to decimal.
code_r12_dec = rsenco(mydata_r12_dec,n,k,'decimal'); % Encode.
code_r12_dectoexp = code_r12_dec - 1; % Convert to exponential.
c1 = isequal(code_r12,code_r12_dectoexp); % True.

% R12 method, binary format
% This yields same results as R12 exponential format.
mydata_r12_bin = de2bi(mydata_r12_dec',m); % Convert to binary.
code_r12_bin = rsenco(mydata_r12_bin,n,k,'binary'); % Encode.
code_r12_bintoexp = reshape(bi2de(code_r12_bin),n,w)' - 1;
c2 = isequal(code_r12,code_r12_bintoexp); % True.

% R13 method
mydata_r13 = fliplr(mydata_r12); % Reverse the order.
% Convert format, using +2 to get in the right range for indexing.
mydata_r13 = p2i(mydata_r13+2);
code_r13 = rsenc(mydata_r13,n,k); % * Encode the data. *
codeX = double(code_r13.x); % Retrieve data from Galois array.
% Convert format, using +1 to get in the right range for indexing.
codelogX = i2p(codeX+1);

4-12

Upgrading from an Earlier Release

codelogX = fliplr(codelogX); % Reverse the order again.

c3 = isequal(code_r12,codelogX) % True.

c3 =

1

Converting Among Various Release 12 Representations of
Coding Data
These rules indicate how to convert among the exponential, decimal, and
binary formats that the Release 12 Reed-Solomon functions support:

• To convert from decimal format to exponential format, subtract one.

• To convert from exponential format to decimal format, replace any negative
values by -1 and then add one.

• To convert between decimal and binary formats, use de2bi and bi2de. The
right-most bit is the most significant bit in this context.

The commands below illustrate these conversions.

msgbin = randint(11,4); % Message for a (15,11) = (2^4-1, 11) code
msgdec = bi2de(msgbin)'; % Binary to decimal
msgexp = msgdec - 1; % Decimal to exponential
codeexp = rsenco(msgexp,15,11,'power');
codeexp(find(codeexp < 0)) = -1; % Use -1 consistently.
codedec = codeexp + 1; % Exponential to decimal
codebin = de2bi(codedec); % Decimal to binary

Changes in Functionality
The table below lists functions whose behavior has changed.

4-13

4 Communications Toolbox 2.1 Release Notes

Function Change in Functionality

wgn The default measurement unit is
the dBW, formerly documented as
"dB." To specify this unit explicitly in
the syntax, set the powertype input
argument to 'dBW', not 'dB'. The
output of the function is unaffected
by this change in syntax.

Obsolete Functions
The table below lists functions that are obsolete. Although they are included
in Release 13 for backward compatibility, they might be removed in a future
release. The second column lists functions that provide similar functionality.
In some cases, the similar function requires different input arguments or
produces different output arguments, compared to the original function.

Function Similar Function

gfplus + operator for Galois arrays

rsdeco rsdec

rsdecode rsdec

rsenco rsenc

rsencode rsenc

rspoly rsgenpoly

4-14

5

Communications Toolbox
2.0 Release Notes

5 Communications Toolbox 2.0 Release Notes

New Features
The Communications Toolbox 2.0 and the Communications Blockset 2.0
are now separate products (that is, the Communications Toolbox no longer
includes blocks).

This section introduces the new features and enhancements added in the
Communications Toolbox 2.0 since the Communications Toolbox 1.4.

Note The Communications Blockset is described in a separate section.

Convolutional Coding Functions
The Communications Toolbox processes feedforward and feedback
convolutional codes that can be described by a trellis structure or a set
of generator polynomials. It uses the Viterbi algorithm to implement
hard-decision and soft-decision decoding. These new functions support
convolutional coding:

• convenc creates a convolutional code from binary data.

• vitdec decodes convolutionally encoded data using the Viterbi algorithm.

• poly2trellis converts a polynomial description of a convolutional encoder
to a trellis description.

• istrellis checks if the input is a valid trellis structure representing a
convolutional encoder.

For more information about using these functions, see "Convolutional Coding"
in the Communications Toolbox User’s Guide.

Gaussian Noise Functions
These new functions create Gaussian noise:

• awgn adds white Gaussian noise to the input signal to produce a specified
signal-to-noise ratio.

5-2

New Features

• wgn generates white Gaussian noise with a specified power, impedance,
and complexity.

Other New Functions
These functions are also new in Release 12:

• eyediagram plots an eye diagram.

• marcumq implements the generalized Marcum Q function.

• oct2dec converts octal numbers to decimal numbers.

• randerr generates bit error patterns. This is similar to the obsolete
function randbit, but it accepts a more intuitive set of input arguments
and uses an upgraded random number generator.

• randsrc generates random matrices using a prescribed alphabet.

• scatterplot produces a scatter plot.

• syndtable generates syndrome decoding tables. This is similar to the
obsolete function htruthtb, but it is not limited to single-error-correction
codes.

Enhancements to Existing Functions
The following functions have been enhanced in Release 12:

• biterr and symerr provide a third output argument that indicates the
results of individual comparisons. These functions also provide more
comprehensive support for comparisons between a vector and a matrix.

• de2bi and bi2de use an optional input flag to indicate the ordering of bits.
If you omit the flag from the list of input arguments, then the default
behavior matches that of Release 11.

• randint can operate without input arguments. Also, it can accept a
negative value for the optional third input argument.

5-3

5 Communications Toolbox 2.0 Release Notes

Major Bug Fixes
The Communications Toolbox includes several bug fixes, including the
following descriptions (online only) of particularly important bug fixes.

5-4

http://www.mathworks.com/access/helpdesk/help/bugfixes_12p1.html#comm_R12

Upgrading from an Earlier Release

Upgrading from an Earlier Release
This section describes the upgrade issues involved in moving from the
Communications Toolbox 1.4 (Release 11) to the Communications Toolbox 2.0.

Changes in Functionality
The table below lists functions whose behavior has changed.

Function Change in Functionality

bi2de Distinguishes between rows and
columns as input vectors. Treats
column vector as separate numbers,
not as digits of a single number. To
adapt your existing code, transpose
the input vector if necessary.

biterr Input argument k must be large
enough to represent all elements of
the input arguments x and y.

Distinguish between rows and
columns as input vectors. To adapt
your existing code, transpose the
input vector if necessary.

Use different strings for the input
argument that controls row-wise and
column-wise comparisons.

biterr, symerr

Produce vector, not scalar, output
if one input is a vector. See these
functions’ reference pages for more
information.

5-5

5 Communications Toolbox 2.0 Release Notes

Function Change in Functionality

de2bi Second input argument, if it appears,
must not be smaller than the number
of bits in any element of the first
input argument. Previously, the
function produced a truncated
binary representation instead of an
error. To adapt your existing code,
specify a sufficiently large number
for the second input argument and
then truncate the answer manually.

ddemod Default behavior uses no filter, not
a Butterworth filter. Regardless
of filtering, the function uses an
integrator to perform demodulation.

dmod, ddemod, dmodce, ddemodce,
modmap, demodmap

For frequency shift keying method,
the default separation between
successive frequencies is Fd, not
2*Fd/M. For minimum shift keying
method, the separation between
frequencies is Fd/2, not Fd.

encode, decode No longer support convolutional
coding. Use convenc and vitdec
instead.

gflineq If the equation has no solutions,
then the function returns an empty
matrix, not a matrix of zeros.

5-6

Upgrading from an Earlier Release

Function Change in Functionality

randint Uses state instead of seed to
initialize random number generator.
See rand for more information
about initializing random number
generators.

rcosflt The 'wdelay' flag is superfluous.
The function now behaves
as the Release 11 function
behaved with the 'wdelay'’
flag. For more information
about changes in rcosflt, see
http://www.mathworks.com/support/solutions/data/

Obsolete Functions
The table below lists functions that are obsolete. Although they are included
in Release 12 for backward compatibility, they might be removed in a future
release. Where applicable, the second column lists functions that provide
similar functionality. In some cases, the similar function requires different
arguments or produces different results compared to the original function.

Function Similar Function, if Any

commgui

convdeco vitdec

convenco convenc

eyescat eyediagram, scatterplot

flxor bitxor

gen2abcd

htruthtb syndtable

imp2sys

oct2gen

randbit randerr

5-7

http://www.mathworks.com/support/solutions/data/30549.html

5 Communications Toolbox 2.0 Release Notes

Function Similar Function, if Any

sim2gen

sim2logi

sim2tran

viterbi vitdec

5-8

	toc
	Communications Toolbox Release Notes
	Communications Toolbox 3.1 Release Notes
	New Features
	Channel Visualization Tool
	Improved Rayleigh Fading Channel
	Gray Coding Functionality
	Rician Channel Enhancement to the BERTool

	Major Bug Fixes
	Upgrading from an Earlier Release
	gfrank
	encode, decode, and quantiz

	Communications Toolbox 3.0.1 Release Notes
	New Features
	Rician Channel BER Calculations
	berfading Updated for Rician Channel
	New Adaptive Equalization Demo

	Major Bug Fixes

	Communications Toolbox 3.0 Release Notes
	New Features
	Bit Error Rate Analysis GUI
	Performance Evaluation
	Equalizers
	Fading Channels and Binary Symmetric Channel
	Interleavers
	Huffman Coding
	Pulse Shaping
	Utility Functions
	Enhancements for Modulation
	Enhancements for BCH Coding

	Major Bug Fixes
	Upgrading from an Earlier Release
	Updating Existing Modulation M-Code
	Updating Existing BCH M-Code
	Converting Between Release 13 and Release 14 Representations of

	Changes in Functionality
	Obsolete Functions

	Known Software and Documentation Problems

	Communications Toolbox 2.1 Release Notes
	New Features
	Galois Field Computations
	Enhancements for Reed-Solomon Codes
	Arithmetic Coding

	Major Bug Fixes
	Bug Fixes Incorporated from Release 12.0

	Upgrading from an Earlier Release
	Updating Existing Galois Field Code
	Replacing Functions
	Converting Between Release 12 and Release 13 Representations of
	Converting Between Release 12 and Release 13 Representations of
	Converting and Simplifying Formats Using R13 Galois Arrays

	Updating Existing Reed-Solomon M-Code
	Converting Between Release 12 and Release 13 Representations of
	Converting Among Various Release 12 Representations of Coding Da

	Changes in Functionality
	Obsolete Functions

	Communications Toolbox 2.0 Release Notes
	New Features
	Convolutional Coding Functions
	Gaussian Noise Functions
	Other New Functions
	Enhancements to Existing Functions

	Major Bug Fixes
	Upgrading from an Earlier Release
	Changes in Functionality
	Obsolete Functions

	tables
	Block Interleaving
	Convolutional Interleaving
	Analog Passband Modulation
	Digital Baseband Modulation

